If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+8y-1=0
a = 5; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·5·(-1)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{21}}{2*5}=\frac{-8-2\sqrt{21}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{21}}{2*5}=\frac{-8+2\sqrt{21}}{10} $
| 5v+19-2v=17+28v-5 | | 11x-3x+102=11x+42 | | k/9=11/7 | | 11x-3+102=11x+42 | | 4(10x+50)=520 | | x/3+11=0 | | x^2-3x=25/4 | | (x)(8-2x)(11-2x)=56 | | 5x-x+3-1=18 | | 114=1/3*p-3 | | 22.8=7.6n | | 2x+30=1,8x+32 | | x^2+3x=25/4 | | 11=4(m-19)+19 | | 1/5(p-14)=10+p | | 8n-2(2+5)=-3+6n | | 4u+20=−4+(u+3) | | 4=16/g | | 2w+22=4(w+3) | | -16d-6=-2(d+3)-10d | | 5/x-2=13/2x-3 | | 8(1=5x)+5=13+5x | | 5t-4=3t+) | | 16/h=-4 | | 37-18=8w=67 | | (2+u)(4u+6)=0 | | 23g+6=-12 | | x-5x8=72 | | 2m=-6m-4 | | 107+x=75 | | 7=2-c | | x-23=132 |